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Visualizations of Semantic Dimension and Distances

Motivation Model Performance Unique Variance by CLIP

The way a model is trained affects the representations it learns... Representations from CLIP visual encoder predict fMRI responses to images CLIP visual encoder with a ResNeth0 backbone explains significantly more Learned prediction model with CLIP captures important semantic dimensions.
9 0 . . . . . . Top images are visualized for each PCs. Animate and inanimate images are separated by PCO, while scenes versus food images are separated by
extremely well. Max R* = 78% (before noise correction). variances in various ROls compared to a ImageNet trained ResNetb0. PCL. For both PCs, the brain projections correspond to functionally well-defined brain regions (e.g., EBA, PPA, and food regions).

ImageNet trained models:
“A baseball player”

. o 20000 best predicted voxels g
Contrastive Language-Image Pre-training (CLIP) model:

“A batter has just attempted to hit the ball being pitched to him
while waiting at home plate.”

How do the different representations affect our ability to predict a brain area, |
' S T
and what does that tell us about how the brain interprets scenes? . e 0 it

Methods

Natural Scene Dataset (NSD) — A 7T large scale fMRI dataset!"
e 8 participants

e 9,000-10,000 distinct color natural scenes from COCO dataset

e task: long-term continuous image recall L4y G
Model pipeline for brain prediction i g\ £ ey !
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T4, ‘= Unique variance by model A (all colored
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T4+ -= Variance explained by FDR corrected)

concatenated model A+B
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- -  ; | 3 [ . CLIP and ResNet; represents images differently.
- , ‘ | & Pairwise similarities of the CLIP and ResNet; representations for 1000 randomly selected stimulus images picks out semantically and visually
% pairs, respectively.
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e L e L D e e L L Representation of people scene may account for CLIP's unique variance
“a person eating with chopsticks and Text I fu{ﬂp,ﬂfbluh RWJ\W(\M . y . . . _ .
reading books in their living room” —> Enc — dict I ! (" ! Voxels that are explained most by CLIP (Left) overlap largely with the voxels that lie on the negative side when projected onto the 1st PC
: pre (Middle). (Right) Voxel-wise scatter plot validates that for voxels that lie on the negative side of 1st PC projection, the further down they lie on
“a few graphic novels and a laptop WMNW the projection, the better they are explained by CLIP.
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“aliving room scene with a
laptop and a television.”
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PCA and maximizing stimuli for PC

“a person eating with

chopsticks and reading . MMMMM“
books in their living room”
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Conclusions
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g & Multimodal representation (e.g. from CLIP)
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+ (nxk) kxk) kxp) e provides an effective way of mapping semantic information in the visual processing

Left: Images that are most aligned with two ends of first PC are extracted (see method), and shown in "+" and " ". Right: Category distribution athwa S

of these two groups of images validates that images on the negative side consist more people, animal, and sports, compared to images in the p y

; other group. e allows for new ways of uncovering semantic basis of the brain
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