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ABSTRACT

Recent successes in using representations from deep neural networks to predict
brain responses promise to advance our understanding of hierarchical information
processing in the primate brain. The productivity of this approach points to a con-
vergence in representation between the brain and artificial neural networks. Given
that both systems learn to achieve high levels of performance for real-world vi-
sion tasks, we address two questions: i) How far does this convergence extend? ii)
What are the factors that influence this convergence? Here we investigate how dif-
ferent choices of tasks and networks can affect the mapping from neural network
representations to brain responses. We build stacked voxelwise encoding models
and compare prediction performance and stacking weights. Our results demon-
strate that these choices may affect correspondences between neural networks and
brains, giving rise to varying interpretations of neural responses. Importantly, our
results also demonstrate that leveraging our extensive existing knowledge of the
brain makes it possible to gain insight into learned representations in artificial
neural networks.

1 INTRODUCTION

Advances in neural networks have spurred dramatic improvement in artificial vision systems. While
the performance of such systems across a wide variety of vision tasks is impressive, to understand
how these networks evolve to achieve high task accuracy remains challenging. Regardless, neural
networks, or more specifically, their learned representations, have been useful as proxy models for
hierarchical processing in the brain (Agrawal et al., 2014; Yamins et al., 2014; Güçlü & van Gerven,
2015; Kell et al., 2018). Given similarity in the task end goals of both artificial and biological
systems, it is not surprising that high-performing systems in both domains share representations
despite drastically different physical implementations(Yamins & DiCarlo, 2016). More broadly, we
see a similar convergence in many domains, including vision (Agrawal et al., 2014; Yamins et al.,
2014; Güçlü & van Gerven, 2015; Schrimpf et al., 2018), audition (Kell et al., 2018), language
(Wehbe et al., 2014; Jain & Huth, 2018; Caucheteux & King, 2020; Jain et al., 2020), and both
feedforward and recurrent networks (Wehbe et al., 2014; Nayebi et al., 2021).

The “explanatory arrow” has almost always been unidirectional – what can artificial neural networks
and their learned representations tell us about brain representations. Implicit in this directionality
is the assumption that neural networks are good models for neural systems; that is, that the compu-
tations implemented in neural networks help us to better understand the ”black box” computations
realized in different parts of the brain. Here we take a deeper look into how various choices of net-
work in terms of layers and task the network is trained on could affects how well these representation
can predict the the brain. Our results indicate that the converse is also possible: facts about the brain
can help us to better understand computations and representation in artificial neural networks.

Interest in “interpretable AI” and different methods for visualizing representation in artificial neural
networks has exploded over the past several years (Mordvintsev et al., 2015; Olah et al., 2017; 2018;
Bau et al., 2017). Yet there are limitations on how much one can learn from visualization of network
features - not the least of which is the human tendency to assign a greater semantic meaning and
functional relevance to visualizations than otherwise might be warranted. On the other hand, there
is a century long history of visual neuroscience on which we can build (Gross, 1994). For example,
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Hubel and Wiesel’s (Hubel & Wiesel, 1959) elucidation of the response properties of localized
receptive fields – a concept that forms the basis for almost all modern approaches to edge detection
(Canny, 1986) – and the well investigated functional regions of interest (ROI) in high level vision
of human discovered using fMRI that consistently serve as face and place detectors (Kanwisher
et al., 1997; Epstein et al., 1999). Outside of the field of vision, (Toneva & Wehbe, 2019) recently
demonstrated that the explanatory arrow can be reversed in the domain of language, and that brain
activity during reading can be used to facilitate the interpretation of deep neural network language
models. In this light, we suggest that our extensive understanding of biological vision will not only
enable future advances in artificial vision systems, but that this knowledge will also enable a better
understanding of the inner workings of such systems.

2 METHODS

Encoding Models and Stacked Regression Encoding models (Naselaris et al., 2011) enable us to
relate stimulus features and brain activity. If a feature is a good predictor of a specific brain region,
information about that feature is likely encoded in that region. Here, we featurized each of stimulus
images by extracting layerwise features from specific networks and use them in the voxelwise en-
coding models to predict brain responses in specific regions-of-interest (ROIs). All images are split
into training and testing set. Model performances are reported as correlations between predicted
responses and true responses.

To encode with multiple features, we applied the stacked regression method (Wolpert, 1992;
Breiman, 1996). We adapted this approach such that each encoding model used a different fea-
ture space as input. At each voxel, encoding models are trained, then the stacking algorithm learns
a convex combination of the predictions of these models for that voxel. The result from stacking is
a readily-interpretable combination of individual features that outperforms the performance of the
best feature alone. These stacking weights indicate how features are best combined to predict the
specific voxel response: generally, the fewer errors a feature makes in its respective encoding model,
the higher its corresponding stacked weight; that is, the importance of that feature for prediction.

Natural Scenes Dataset (NSD) NSD (Allen et al., 2021) is a large-scale fMRI dataset collected
at ultra-high-field strength (7T). NSD consists of whole-brain, high-resolution measurements of 8
adult participants as they viewed thousands of color natural scenes over the course of 30–40 scan
sessions. The natural scenes are obtained from the Microsoft COCO image dataset (Lin et al., 2014).
Beta estimates are obtained from single-trial GLM in which the HRF is estimated for each voxel.

3 RESULTS

We extracted learned representations from different tasks and network architectures and explored
how they differ in predicting brain responses to natural images. Layerwise features were extracted
from specific networks and then used to build voxelwise encoding models for the cortical area of
Participant 1 in NSD. For evaluation, we calculated R, the square root of the coefficient of determi-
nation, as the metric of the goodness of fit for the encoding model. We also show weights learned
from the stacking algorithm for each feature.

To investigate how tasks influence the representations learned by a network and their ability to
predict brain data, we fixed the network architecture and compared representations learned for object
and scene classification. We used AlexNet (Krizhevsky et al., 2012) pretrained on ImageNet (Deng
et al., 2009) and Places365 (Zhou et al., 2017) for each task. For each AlexNet model, we extracted
features from the following 7 layers in an order consistent with the network architecture: Conv-1,
Conv-2, Conv-3, Conv-4, Conv-5, FC-6, FC-7.

Figure 1 shows the result from encoding V1, V2, V3, V4 in the early visual cortex, Place ROIs (OPA,
PPA, RSC) and Face ROIs (FFA, OFA, aTLface) using layerwise features from AlexNet for object
and scene classification. Within each subfigure, each individual line is prediction performances
and stacking weights across features from different layers for an individual voxel. For each row of
the subfigures, we can see a progression of preferred layers across ROIs. Consistent with previous
results (Yamins et al., 2014; Güçlü & van Gerven, 2015), in AlexNet-Object features extracted from
convolution layers (Conv-2 and Conv-3) encode the early visual areas (especially V1, V2, V3) better
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Figure 1: AlexNet encod-
ing results. Every line
corresponds to one of the
best 200 encoded voxels.
Each column corresponds
to a visual ROI. The first
and second rows are R
results for AlexNet-Object
and AlexNet-Place layers.
The third and fourth row
are the stacking weights.
For V1-V4 show a reverse
pattern when going from
AlexNet-Object to AlexNet-
Place: weights of Conv-4
layer surge and weights of
Conv-3 layer plunge.

Figure 2: ResNet50 en-
coding results. Every line
corresponds to one of the
best 200 encoded voxels.
Each column corresponds
to a visual ROI. The first
and second rows are R re-
sults for ResNet50-Object
and ResNet50-Place lay-
ers. The third and fourth
row are the stacking
weights. Preferred lay-
ers for ResNet50-Object
and ResNet50-Place are
consistent across ROIs.

while features extracted from fully connected layer (FC-7) outperform those from all other layers in
encoding Place and Face ROIs. Comparing the first row with the second, and the third row with the
fourth, we can see there is a peak weight shift from Conv-3 layer to Conv-4 layer as we change the
task from AlexNet-Object to AlexNet-Place. This indicates that with the same architecture, change
of tasks could affect how representations from network predict the brain.

Task differences observed in Alexnet do not replicate when we change the network architecture to
ResNet50 (He et al., 2016) while fixing the task and dataset. From ResNet50, we extract features
from the following 6 layers in the order consistent with how the network is built: Conv-1, the last
layer of Conv-2 to Conv-5 blocks respectively, and the last Avgpool layer before the final layer.

Figure 2 shows results from voxelwise encoding models of V1-V4 in the early visual cortex,
Place ROIs (OPA, PPA, RSC) and Face ROIs (FFA, OFA, aTLface) using layerwise features from
ResNet50 for object and scene classification. Similar to what we see in the AlexNet results in Fig-
ure1, we observe the same trend that features extracted from early layers represent the early visual
cortex better while features extracted from later layers represent Place and Face ROIs better. How-
ever, preferred layers by the brain as well as stacking weight are consistent between the two tasks,
indicating that the additional depth of networks might lessen the influence of task in terms brain
prediction and that these deeper network might just represent more information about the input that
are not subject to tasks. One thing to note is that, for Face and Place area prediction, layer 4 in
ResNet is assigned the largest stacking weight. Different from what we see in Alexnet, where the
last layer has the largest weight, it indicates that network expressiveness might the key for a good
brain prediction instead of the semantic structure in the representations.
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Figure 3: Taskonomy edge
detection network encod-
ing results. Content in
each subfigure is similar as
ones in previous figures.
The first and second rows
are R results for Edge2D
and Edge3D layers. The
third and fourth row are
the stacking weights. For
both Edge2d and Edge3d,
early layers predict consis-
tently better across ROIs
and Conv-3 layer is the
most preferred in all ROIs
except V1.

Lastly, the commonly observed pattern that early layers in networks predict early visual layers in
the brain better while later layers in a network predict higher visual areas better, as shown in Yamins
et al. (2014); Güçlü & van Gerven (2015), does not hold when using representations extracted from
edge detection networks. Here we extracted features from Taskonomy (Zamir et al., 2018) encoder
trained for 2D and 3D edge detection. The network architecture is similar to ResNet50 but differs in
replacing stride 2 convolution with stride 1 convolution in Conv-5 and removing all global average
pooling. We extracted features exactly as what we do in ResNet50 but excluded Conv-4 blocks.

Figure 3 shows the encoding results for V1 to V4 in the early visual cortex, Place ROIs (OPA,
PPA, RSC) and Face ROIs (FFA, OFA, aTLface) using Taskonomy features for 2D and 3D edge
detection. For both Edge2d and Edge3d, early layers predict consistently better across ROIs. The
overall prediction performance is lower, which is not surprising considering how little information
edge detection task would normally required compared to more high level semantic tasks. What’s
surprising here is how early layers of edge detection networks yield higher prediction performances
than the later layers even in predicting place and face areas in the brain. From the neuroscience
literature, we know fairly well about the consistent responses of place and face images in Place
(Epstein et al., 1999; Park & Chun, 2009; Rajimehr et al., 2011) and Face ROIs (Kanwisher et al.,
1997; Tarr & Gauthier, 2000; Kanwisher et al., 2002; Gauthier et al., 2000; Grill-Spector et al., 2004)
in the brain respectively. Contrary to the commonly believed view that a network trained to do a
task should only represent variance relevant to that task (Bruna & Mallat, 2013), our result indicates
that a network could possibly represent more information than what is needed in a task among the
intermediate layers. Further analysis would be needed to further support this point.

4 DISCUSSION

We observed that in predicting brain response using representations from a relatively simple neural
network (i.e., AlexNet), varying the training task leads to differences in which network layers best
predict the brain. Of note, this effect is network dependent and disappears when the same com-
parison is done with a much larger network (i.e., ResNet50). As previously shown in multi-task
learning, network capacity and expressive power (Bengio & Delalleau, 2011; Raghu et al., 2017)
influences the learned task-relevant representations and affects how different tasks may be learned
together (Standley et al., 2020). Thus, our first takeaway is that network structure should be taken
into consideration when mapping from network representations to the brain. A second takeaway
is that, as exemplified by our results from edge detection networks, one can leverage our extensive
understanding of the computations realized in different brain areas to gain a more holistic under-
standing of learned representations in neural networks - a step beyond visualizing randomly- or
hand-picked units. Overall, the methods presented here enable a more comprehensive approach
to using neural network representations to model brain function, allowing us to both better under-
stand how choices as to network architecture and task affect predictions for biological systems and,
conversely, to further interpret the learned representations realized in artificial systems.
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RESPONSE TO REVIEWERS

We are thankful for detailed feedback from both of our reviewers. Below we listed some specific
responses to address their concerns and confusions.

R1: We have added more details in data preprocessing as well as model training in the main paper.
For each result figure, we have also provided more of our interpretation.

R2: For this paper, we define task as a distinct input to output mapping. In this case, object and
place classifications are considered different tasks because different images to labels mapping.

For results figures, we picked top 200 voxels only for visulization purpose. We would like to include
as many voxels as possible while most of lines are still identifiable. We find 200 to be a good number
for this purpose.

In terms of why intermediate features from an edge detection network can still predict areas like
FFA and PPA, we agree with the reasoning that face and place areas do retain edge information
while they processes these high level categories. Though this does not explain why we observe
better prediction accuracy from the middle layers of edge detection networks instead of later layers.
This reasoning, instead, would predict that all layers predict these areas similarly or the later layers
predict better.
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